normal antitoxin - vertaling naar arabisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

normal antitoxin - vertaling naar arabisch

SPECIAL COORDINATE SYSTEM IN DIFFERENTIAL GEOMETRY
Geodesic normal coordinates; Normal coordinate; Normal neighborhood

normal antitoxin      
‎ ضِدُّ ذِيْفَانٍ نِظامِيّ‎
tetanus immune globulin         
MEDICATION MADE UP OF ANTIBODIES AGAINST THE TETANUS TOXIN
Tetanus antitoxin; Tetanus immune globulin; Tetanus immunoglobulin; Antitetanus immunoglobulin
‎ الغلوبولينُ المَناعِيُّ للكُزاز‎
tetanus antitoxin         
MEDICATION MADE UP OF ANTIBODIES AGAINST THE TETANUS TOXIN
Tetanus antitoxin; Tetanus immune globulin; Tetanus immunoglobulin; Antitetanus immunoglobulin
‎ ضِدُّ ذِيْفَانِ الكُزاز‎

Wikipedia

Normal coordinates

In differential geometry, normal coordinates at a point p in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of p obtained by applying the exponential map to the tangent space at p. In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.

A basic result of differential geometry states that normal coordinates at a point always exist on a manifold with a symmetric affine connection. In such coordinates the covariant derivative reduces to a partial derivative (at p only), and the geodesics through p are locally linear functions of t (the affine parameter). This idea was implemented in a fundamental way by Albert Einstein in the general theory of relativity: the equivalence principle uses normal coordinates via inertial frames. Normal coordinates always exist for the Levi-Civita connection of a Riemannian or Pseudo-Riemannian manifold. By contrast, in general there is no way to define normal coordinates for Finsler manifolds in a way that the exponential map are twice-differentiable (Busemann 1955).